

Naturbasierter Küstenschutz im Nexus von Meeresschutz und Klimaanpassung

Strategien, Herausforderungen und Chancen

Gregory Fuchs, Ecologic Institute

Berlin, 04.07.2024

Küstenschutz in Deutschland

- In Deutschland leben etwa 3,2 Millionen Menschen in überflutungsgefährdeten Küstengebieten
- Steigende Extremwasserstände = erhöhte Gefahr von Überschwemmungen, und Sturmfluten
 zunehmende Küstenerosion
- > Bedrohung der Küstenschutzsysteme, Schäden an Siedlungen und Infrastruktur in Küstennähe, Verlust von Eigentum und Vertreibung von Menschen.
- Schleswig-Holsteins: ¼ der Landesfläche (333.000 Menschen) durch Meeresüberflutungen gefährdet.
- > Trend zur Anwendung sanfterer, naturbasierter Lösungen und Hybridstrategien ergänzen harten Maßnahmen für Küstenschutz und als Anpassungsmaßnahmen

Van der Meulen et al., 2022

Naturbasierter/ökosystembasierter Küstenschutz

- Herkömmliche Küstenschutzmethoden, die sich auf bauliche, harte Strukturen wie Deiche stützen, sind möglicherweise nicht wirksam genug, um mit dem Klimawandel Schritt zu halten.
- Ein naturbasierter Küstenschutz, der auf der Wiederherstellung von Lebensräumen beruht, kann eine anpassungsfähige Alternative für den Küstenschutz sein.

Morris et al. 2020

Schutz von Menschen und Eigentum

Senkung der ökologischen Auswirkungen und wirtschaftlichen Kosten Verbesserung der biologischen Vielfalt und der Ökosystemleistungen

- Naturbasierte Anpassungsmaßnahmen bieten Küstenschutz durch Ökosystemprozesse: Sie sind oft kostengünstiger, ressourcenschonender und verbessern die Ökosystemfunktionen und Resilienz.
- Wellenabschwächung: Reduzierte Wellenhöhe und -energie, mindert Sturmschäden.
- ➤ Hochwasser- und Sturmflutabschwächung: Küstenlebensräume verringern Höhe oder Dauer von Hochwasser, Überschwemmungen durch Meeresspiegelanstieg
- Küstenlinienreaktion: Verringerung von Erosion & Landverlusten
- Empirische Daten vorhanden, dennoch eitere Bewertungen notwendig, um tatsächliche Kosten und Vorteile robuster zu ermitteln.
- Literatur befasst sich mit Dünenhabitaten, Austernriffen, Salzwiesen und Seegraswiesen

	Maßnahmentyp	Stärken	Schwächen
	Harte Maßnahmen	 Sofortige Wirksamkeit Geeignet für begrenzten Raum ökonomische Vorteile 	 Mangelnde Anpassungsfähigkeit durch starre Strukturen Hohe Umweltauswirkungen Sicherheitswahrnehmung irreführend
	Natürliche Maßnahmen	 Anpassungsfähig an Klimaänderungen Multifunktionalität = viele Zusatznutzen (Biodiversität, mensch. Wohlergehen, Klimaschutz, sozial-ökologische Resilienz) Keine Investitionskosten dafür hohe ökonomische Vorteile Flexibilität = dynamischer Küstenschutz 	 Regeneration braucht Zeit, z.B. nach Stürmen oder durch menschliche Degradierung Anfälligkeit angesichts hoher Belastungen Hoher Platzbedarf
	Weiche Maßnahmen	 Multifunktionalität Kosteneffektivität Verbesserte Wirksamkeit über Zeit 	 Für Hochrisikozonen alleine unzureichend Erhöhter Platzbedarf Dauer bis zur vollen Wirksamkeit Effektivität abhängig vom Ökosystemtyp und umgebenden Umweltfaktoren
	Hybride Maßnahmen	 Kombination von Stärken aus hart und weich Flexibilität im Kontext – Anpassung an verschiedene Risikoniveaus Ökonomische Vorteile 	 Komplexität im Design und hoher Planungsaufwand Wenig globale Umsetzung bislang, Tendenz steigt Umweltbelastung durch graue Komponenten

Ökonomische Vorteile

- Obwohl genaue Kosten-Nutzen-Analysen aufgrund fehlender Ausgangsdaten nicht möglich sind, gibt es Belege dafür, dass die Vorteile der Wiederherstellung von Meeresökosystemen die Kosten um ein Vielfaches überwiegen.
- Auch wenn es in bestimmten Wirtschaftszweigen zu kurzfristigen Verlusten kommen kann, werden diese höchstwahrscheinlich durch langfristige Gewinne aufgewogen.
- Der wirtschaftliche Nutzen der Wiederherstellung von Seegraswiesen in der EU wird auf 284 bis 514 €/ha/Jahr geschätzt; für Muschel- und Austernbänke wird er auf 5.000 bis 90.000 € pro ha und Jahr geschätzt.

Herausforderungen

- Kosten für harte Infrastrukturen sind hoch und können das Ökosystem, in dem sie umgesetzt werden, schädigen. Sie fördern eine geringere Vielfalt als natürliche Maßnahmen und weisen oft invasive Arten auf.
- Verlust von Habitaten vermindert marinen Lebensraum und gefährdet den natürlichen Küstenschutz
- Schutz essenzieller Faktoren für Ökosystemfunktionen und Dienstleistungen ist unter Klimawandel und Umweltstörungen kritisch.
- ▶ Ein Vergleich zwischen traditionellen und naturbasierten Anpassungsmethoden ist unter den gleichen Umweltbedingungen schwierig

Chancen

- Kontrolliertes Rückverlegen reduziert die Gefährdung durch Überschwemmungen effektiver als höhere Deiche.
- Dennoch reichen beide Maßnahmen möglicherweise nicht aus, um projiziertes Hochwasserrisiko innerhalb dieses Jahrhunderts zu bewältigen (Ostsee)
- Vergleich mit künstlichen Strukturen: Natürlicher Schutz wirkt ähnlich, bietet aber dynamische Vorteile.
- Der größte Schutz für Menschen und Eigentum liegt in der Entwicklung von Anpassungsstrategien für derzeit ungeschützte Küstenabschnitte (Ostsee)

Schlussfolgerungen und Ausblick

- Die Integration von Klimaanpassungsmaßnahmen in den Meeresschutz ist entscheidend für die langfristige Erhaltung und Stärkung der Ökosysteme in Nord- und Ostsee sowie der Lebensqualität von Küstengemeinden und allen die vom Meer abhängen.
- Dies erfordert einen koordinierten Ansatz, der die verschiedenen Belastungen und Herausforderungen ganzheitlich betrachtet und durch wirksame und innovative naturbasierte Lösungen die Resilienz der Ökosysteme fördert.
- Vorsorgliche und integrative Planung unter Einbeziehung aller relevanten Akteure und Sektoren ist entscheidend für den langfristigen Erfolg.

Vielen Dank! Gibt es Fragen?

Gregory Fuchs

gregory.fuchs@ecologic.eu

Ecologic Institute

Pfalzburger Str. 43/44 10717 Berlin Germany

Tel. +49 (30) 86880-0

ecologic.eu

Referenzen

- European Commission (2022). IMPACT ASSESSMENT REPORT. ANNEX VI-b. Accompanying the proposal for a Regulation of theEuropean Parliament and of the Council on nature restoration. Available online:https://environment.ec.europa.eu/document/download/8ce9e5a2-503b-4bb8-b62b-7fffa5016598_en
- Filbee-Dexter, K., Wernberg, T., Barreiro, R., Coleman, M. A., de Bettignies, T., Feehan, C. J., ... & Verbeek, J. (2022). Leveraging the blue economy to transform marine forest restoration. Journal of phycology, 58(2), 198-207.
- Huynh, L. T. M., Su, J., Wang, Q., Stringer, L. C., Switzer, A. D., & Gasparatos, A. (2024). Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures. Nature Communications, 15(1), 2870.
- Kiesel, J., Honsel, L. E., Lorenz, M., Gräwe, U., & Vafeidis, A. T. (2023). Raising dikes and managed realignment may be insufficient for maintaining current flood risk along the German Baltic Sea coast. Communications Earth & Environment, 4(1), 433.
- Morris, R. L., Bilkovic, D. M., Walles, B., & Strain, E. M. (2022). Nature-based coastal defence: Developing the knowledge needed for wider implementation of living shorelines. Ecological Engineering, 185, 106798.
- Narayan, S., Beck, M. W., Reguero, B. G., Losada, I. J., Van Wesenbeeck, B., Pontee, N., ... & Burks-Copes, K. A. (2016). The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PloS one, 11(5), e0154735.
- Van der Meulen, F., IJff, S., & van Zetten, R. (2023). Nature-based solutions for coastal adaptation management, concepts and scope, an overview. Nordic Journal of Botany, 2023(1), e03290
- Van der Nat, A., Vellinga, P., Leemans, R., & Van Slobbe, E. (2016). Ranking coastal flood protection designs from engineered to nature-based. Ecological Engineering, 87, 80-90.